
Copyright © 2020 Kavian Scientific Research Association

KSRA Learning Academy
KSRA Learning System

Computer

Aided
Software

Engineering

What Is

Object-

Orientation?

 REFINING THE

REQUIREMENTS

MODEL

Copyright © 2020 Kavian Scientific Research Association

 About reuse in software development;

 How object-orientation contributes to reuse;

 How to identify and model aggregation, composition and
generalisation;

 An approach to modelling components;

 About ‘patterns’ in software development;

 How analysis patterns help to structure a model.

In This Lecture You Will Learn:

Copyright © 2020 Kavian Scientific Research Association

 Software development has concentrated on inventing new

solutions

 Recently, the emphasis has shifted

 Much software is now assembled from components that

already exist

 Component reuse can save money, time and effort

Reuse in Software Development

Copyright © 2020 Kavian Scientific Research Association

 Achieving reuse is still hard

 Reuse is not always appropriate – can’t assume an
existing component meets a new need

 Poor model organisation makes it hard to identify suitable
components

 The NIH (Not-Invented-Here) syndrome

 Requirements and designs are more difficult to reuse than
code

Reuse in Software Development

Copyright © 2020 Kavian Scientific Research Association

 Encapsulation makes components easier to use in systems for

which they were not originally designed

 Aggregation and composition can be used to encapsulate

components

 Generalisation allows the creation of new specialised classes

when needed

Reuse: The Contribution of OO

Copyright © 2020 Kavian Scientific Research Association

 Object-oriented systems are made up of objects of many
classes. Associations represent relationships among classes.

 An association is represented by a line drawn between the
associated classes involved with an optional role name
attached to either end.

 The role name is used to specify the role of an associated
class in the association.

 If an association connects two objects instead of classes, it is
called a link.

 A link is an instance of an association.

Copyright © 2020 Kavian Scientific Research Association

Association

Name of Link

Multiplicity

Role

Name of Association

Copyright © 2020 Kavian Scientific Research Association

Association (cont’d)

 Qualification serves as names or keys that are part of the
association and are used to select objects across the
association at the other end.

 In UML, a qualifier is used to model this association semantic,
that is an association attribute whose value determines a
unique object or a subset of objects at the other end of an
association.

Copyright © 2020 Kavian Scientific Research Association

Qualification

Bank + account no => person

Copyright © 2020 Kavian Scientific Research Association

Qualification

Sometimes, it is necessary to describe an association by

including some attributes which do not naturally belong to the

objects involved in the association.

Copyright © 2020 Kavian Scientific Research Association

Association Classes

Copyright © 2020 Kavian Scientific Research Association

Association Classes (cont’d)

 Special types of association, both sometimes called whole-part

 A campaign is made up of adverts:

Campaign Advert
0..*1

Unfilled diamond

signifies aggregation

Copyright © 2020 Kavian Scientific Research Association

Aggregation and Composition

 Aggregation is essentially any whole-part relationship

 Semantics can be very imprecise

 Composition is ‘stronger’:

 Each part may belong to only one whole at a time

 When the whole is destroyed, so are all its parts

Copyright © 2020 Kavian Scientific Research Association

Aggregation and Composition

 Aggregation is a stronger form of association.

 It represents the has-a or part-of relationship.

 In UML, a link is placed between the “whole” and the “parts”
classes with a diamond head attached to the “whole” class to
indicate that this association is an aggregation.

 Multiplicity can be specified at the end of the association for
each of the “part-of” classes to indicate the quantity of the
constituent parts.

 Typically, aggregations are not named, and the keywords
used to identify aggregations are “consists of”, “contains” or
“is part of”.

Copyright © 2020 Kavian Scientific Research Association

Aggregation

Copyright © 2020 Kavian Scientific Research Association

Aggregation (cont’d)

 An everyday example:

 Clearly not composition:

 Students could be in several classes

 If class is cancelled, students are not destroyed!

Copyright © 2020 Kavian Scientific Research Association

Aggregation and Composition

Class Student0..*1..*

 A stronger form of aggregation is called composition, which
implies exclusive ownership of the “part-of” classes by the
“whole” class, i.e. a composite object has exclusive
ownership of the parts objects.

 This means that parts may be created after a composite is
created, but such parts will be explicitly removed before the
destruction of the composite.

Copyright © 2020 Kavian Scientific Research Association

Composition

Copyright © 2020 Kavian Scientific Research Association

Composition (cont’d)

 Another everyday example:

 This is (probably) composition:

 Ingredient is in only one meal at a time

 If you drop your dinner on the floor, you probably lose the
ingredients too

Meal Ingredient1..*1

Filled diamond signifies composition

Copyright © 2020 Kavian Scientific Research Association

Aggregation and Composition

 Constraints are an extension of the semantics of a UML
element, allowing one to add new rules or modify existing
ones. Sometimes it is helpful to present an idea about
restrictions on attributes and associations for which there is
no specific notation.

 Constraints are represented by a label in curly brackets
({constraintName} or {expression}) that are attached to the
constrained element.

Copyright © 2020 Kavian Scientific Research Association

Constraints and Notes

Copyright © 2020 Kavian Scientific Research Association

Constraints and Notes (cont’d)

Copyright © 2020 Kavian Scientific Research Association

Example – A Sales

Order System

Problem Statement

Textual

Analysis

Use Case Descriptions

Class Model

Copyright © 2020 Kavian Scientific Research Association

Structural Analysis Techniques

 Preparing the problem statement;

 Identifying objects and classes using textual analysis;

 Developing a data dictionary;

 Identifying associations between classes;

 Identifying attributes of classes and association classes;

 Structuring classes using inheritance;

 Verifying access paths for likely queries; and

 Iterating and refining the model.

Copyright © 2020 Kavian Scientific Research Association

Domain Modeling and Analysis

Customer Account

Bank Transaction

Customer Account

Bank Transaction

Problem Statement

Textual

Analysis

Customer Account

Bank Transaction

Candidate Clases

Customer Account

BankTransaction

Initial Domain Class Model

-name

-address

Customer

-balance

Account

-name

Bank

-amount

Transaction

Classes with Attributes

-name

-address

Customer

-balance

Account

-name

Bank

-amount

Transaction

Restructured Class Model

Withdraw Transaction

-destination account

Transfer Transaction

-credit limit

Credit Card Account

-overdraft limit

Current Account

Copyright © 2020 Kavian Scientific Research Association

Domain Modeling and Analysis

(cont’d)

 To identify objects and classes, perform a textual analysis to extract all
nouns and noun phrases from the problem statement.

 Nouns or noun phrases of the following categories are more likely to
represent objects:

 Tangible things (e.g. classroom, playground)

 Conceptual things (e.g. course, module)

 Events (e.g. test, examination, seminar)

 Outside organizations (e.g. publisher, supplier)

 Roles played (e.g. student, teacher, principal)

 Other systems (e.g. admission system, grade reporting system)

Copyright © 2020 Kavian Scientific Research Association

Identifying objects and classes

 Add generalisation structures when:

 Two classes are similar in most details, but differ in some
respects

 May differ:

In behaviour (operations or methods)

In data (attributes)

In associations with other classes

Copyright © 2020 Kavian Scientific Research Association

Adding Generalisation Structure

 An association is a relationship between objects.

 For example, John and Peter are instances of the class
Person and John is the father of Peter.

 Association can be identified by looking for verbs and verb
phrases connecting two or more objects in the problem
statement.

 e.g. “A client may open one or more accounts for stock
trading.”

 Name of the association: has or opened by?

 The name of the association should reflect the nature rather
than the historic event.

Copyright © 2020 Kavian Scientific Research Association

Identifying Associations between

Classes

Verb phrase Association

A client may open one or more accounts for stock trading. has

When a client issues a buy order for an account, the client must specify the

stock code, number of shares and the maximum price that he is willing to
pay for them (the bid price).

issued by, buy

When a client issues a sell order for an account, the client must specify the

stock code, the number of share and the minimum price that he is willing to
sell them (the ask price).

issued by, sell

All trade orders will be forwarded to the stock trading system of the stock

exchange for execution.

executed by

When an order is completed, the stock trading system of the stock exchange

will return the transaction details of the order to the online stock trading
system.

returned by

The transaction details of a trade order may be a list of transactions, and

each transaction specifies the price and the number of shares traded.

consists of

Copyright © 2020 Kavian Scientific Research Association

Identifying Associations between

Classes (cont’d)

 From the domain knowledge, we have the following

associations:

– A stock is listed on a stock exchange.

– A stock is traded on a stock trading system of a stock

exchange.

– The result of a trade order is a list of transactions.

– A stock exchange has one or more stock trading systems.

Copyright © 2020 Kavian Scientific Research Association

Identifying Associations between

Classes (cont’d)

Copyright © 2020 Kavian Scientific Research Association

Initial Domain Class Diagram

 Attributes are properties of a class, such as name, address, telephone
number of the Client class.

 Look for nouns or noun phrases followed by possessive phrases, e.g.
“address of the client”.

 Adjectives that appear immediately before a noun corresponding to a class
can also be an enumerated value of an attribute, e.g. “a canceled buy
order”.

 Attributes are less likely to be discovered from the problem statement.

 However, it is not necessary to identify all attributes in this step because
the attributes do not affect the structure of the domain class model.

 Instead we should only do so if they can be identified readily. We will be
able to identify the attributes more readily at later stages of the
development life cycle (e.g. detailed design phase).

Copyright © 2020 Kavian Scientific Research Association

Identifying Attributes of Classes

and Association Classes

 Two types of staff:

Copyright © 2020 Kavian Scientific Research Association

Adding Structure:

Have qualifications recorded

Can be client contact for campaign

Bonus based on campaigns they have
worked on

Creative

Admin

Qualifications are not recorded

Not associated with campaigns

Bonus not based on campaign profits

calculateBonus ()

StaffMember
{abstract}

staffName
staffNo
staffStartDate
calculateBonus ()
assignNewStaffGrade ()
getStaffDetails ()

CreativeStaff

qualification

assignStaffContact ()

AdminStaff

calculateBonus ()

Copyright © 2020 Kavian Scientific Research Association

Adding Structure:

 Two approaches: top down and bottom up

 Bottom-up approach:

 similar class name

 similar attributes

 similar operations

 similar associations

 e.g. the buy order and sell order classes both have the price
and number of shares attributes and both of them are
associated with the stock class and account class.

Copyright © 2020 Kavian Scientific Research Association

Structuring Classes Using

Inheritance

Copyright © 2020 Kavian Scientific Research Association

Structuring Classes Using

Inheritance (cont’d)

 Top-down approach:

 check a class to see whether it has some special cases

that have additional structural or behavioral requirements.

 noun phrases consisting of adjectives and class names,

e.g. sell order class and buy order class

 taxonomies of real-life objects

 domain knowledge,

e.g. cash account and margin account

Copyright © 2020 Kavian Scientific Research Association

Structuring Classes Using

Inheritance (cont’d)

Copyright © 2020 Kavian Scientific Research Association

Structuring Classes Using

Inheritance (cont’d)

 Check whether the domain class diagram can provide the
correct answers to queries that are common to other
applications in the domain.

 In the online stock trading system example, a typical client
query would be the current stock balance of his account.

 This requires an association between the account class and
the stock class to provide the information on the number of
shares held in the account.

Copyright © 2020 Kavian Scientific Research Association

Verifying Access Paths for

Likely Queries (cont’d)

Copyright © 2020 Kavian Scientific Research Association

Verifying Access Paths for

Likely Queries (cont’d)

Copyright © 2020 Kavian Scientific Research Association

Verifying Access Paths for

Likely Queries (cont’d)

 It is highly unlikely that we are able to develop the correct
domain class model in one pass.

 The domain class model needs to be refined several times
before it becomes robust.

 The development of the domain class model is not a rigid
process, and we need to repeatedly apply the above steps
until the domain class model finally becomes stable.

Copyright © 2020 Kavian Scientific Research Association

Iterating and Refining the Model

 The following checklist can help you identify areas to improve the domain
class model .

 A class without attributes, operations and associations - consider
removing the class.

 A class with many attributes and operations covering a wide area of
requirements - consider splitting the class into two or more classes.

 A query cannot be answered by tracing the domain class model -
consider adding additional associations.

 Asymmetries in generalizations and associations - consider adding
additional associations and restructuring the classes with inheritance.

 Attributes or operations without a hosting class - consider adding new
classes to hold these attributes and operations.

Copyright © 2020 Kavian Scientific Research Association

Iterating and Refining the Model

(cont’d)

 Standard UML techniques can be used to model components

 Component internals can be detailed in a class diagram

 Component interaction can be shown in a communication

diagram

Copyright © 2020 Kavian Scientific Research Association

Modelling Components in UML

 UML has icons for modelling components in structure diagrams

(e.g. class diagrams)

« component »

Payments

TakePayment

« component »

Bookings

Provided interface offers services Required interface uses services

Ball-and-socket connector maps provided interface

of one component to required interface of another

Copyright © 2020 Kavian Scientific Research Association

Modelling Components in UML

 Structure diagrams can mix component icons with other icons,

e.g. interfaces

«interface»
Allocate Seats

GetFreeSeats(seatType)

AllocateSeat(seatRef)

DeallocateSeat(seatRef)

Flight Management

«component» «realize»

Copyright © 2020 Kavian Scientific Research Association

Modelling Components in UML

A pattern:

 “describes a problem which occurs over and over again in

our environment, and then describes the core of a solution to

that problem, in such a way that you can use this solution a

million times over, without ever doing it the same way twice.”

Alexander et al. (1977)

Copyright © 2020 Kavian Scientific Research Association

Software Development Patterns

 A pattern has:

 A context = a set of circumstances or preconditions for the

problem to occur

 Forces = the issues that must be addressed

 A software configuration that resolves the forces

Copyright © 2020 Kavian Scientific Research Association

Software Development Patterns

 Patterns are found at many points in the systems
development lifecycle:

 Analysis patterns are groups of concepts useful in
modelling requirements

 Architectural patterns describe the structure of major
components of a software system

 Design patterns describe the structure and interaction of
smaller software components

Copyright © 2020 Kavian Scientific Research Association

Software Development Patterns

 Patterns have been applied widely in software development:

 Organisation patterns describe structures, roles and

interactions in the software development organisation itself

 Anti-patterns document bad practice

 Mushroom Management is an organisation anti-pattern

Copyright © 2020 Kavian Scientific Research Association

Software Development Patterns

Transaction

transactionNumber
transactionDate

transactionTotal

updateTransactionTotal ()

TransactionLineItem

TransactionLineNumber
transactionLineQuantity
transactionLineValue

comprises

*1

Copyright © 2020 Kavian Scientific Research Association

Simple Analysis Pattern

AccountabilityType

Accountability

Time Period

Party

Person

Organization

commissioner

responsible

* *

*

1

1

1

*

1

Copyright © 2020 Kavian Scientific Research Association

Accountability Analysis Pattern

Pattern name: A descriptor that captures the essence of the pattern.

Intent: Describes what the pattern accomplishes or represents

Motivation: A scenario that illustrates how the pattern can be used to address the

problem.

Forces and context: A description of external issues (forces) that can affect how the

pattern is used and also the external issues that will be resolved when the pattern is

applied.

Solution: A description of how the pattern is applied to solve the problem with an

emphasis on structural and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what trade-offs

exist during its application.

Design: Discusses how the analysis pattern can be achieved through the use of known

design patterns.

Known uses: Examples of uses within actual systems.

Related patterns: On e or more analysis patterns that are related to the named pattern

because (1) it is commonly used with the named pattern; (2) it is structurally similar to the

named pattern; (3) it is a variation of the named pattern.

Copyright © 2020 Kavian Scientific Research Association

Analysis Patterns

 Bennett, McRobb and Farmer (2005)

 Ambler (2003)

 Cheesman and Daniels (2001)

 Coad (1997)

 Fowler (1997)

(For full bibliographic details, see Bennett, McRobb and Farmer)

 Object-Oriented Technology - From Diagram to Code with
Visual Paradigm for UML, Curtis H.K. Tsang, Clarence S.W.
Lau and Y.K. Leung, McGraw-Hill Education (Asia), 2005

Copyright © 2020 Kavian Scientific Research Association

References

Copyright © 2020 Kavian Scientific Research Association

WE FOCUS ON KNOWLEDGE-BASED ON

EDUCATION

KSRA of Empowerment is a global non-

profit organization committed to bringing
empowerment through education by

utilizing innovative mobile technology and

educational research from experts and

scientists. KSRA emerged in 2012 as a

catalytic force to reach the hard to reach
populations worldwide through Learning

management system & E-learning & mobile

learning.

The KSRA team partners with local under-
served communities around the world to

improve the access to and quality of

knowledge based on education, amplify and

augment learning programs where they

exist, and create new opportunities for e-
learning where traditional education

systems are lacking or non-existent.

