
Copyright © 2020 Kavian Scientific Research Association

KSRA Learning Academy
KSRA Learning System

Computer

Aided
Software

Engineering

What Is 

Object-

Orientation?



 The fundamental concepts of object-orientation

 The justifications for an object-oriented approach

In This Lecture You Will Learn

Copyright © 2020 Kavian Scientific Research Association



 Broadly speaking, there are two general approaches to 
software development: the structured approach and the 
object-oriented approach. 

 The structured approach has been very fashionable since 
the 1970s; it was adequately supported by conventional 
procedural languages. 

 The structured approach is centered on the system’s 
functional views and uses different models at various 
stages of the development process.  

 When development progresses from one stage to the next, 
the models in the current stage are transformed into the 
models of the next stage. 

Structured Approach 

Copyright © 2020 Kavian Scientific Research Association



 There are three major weaknesses with the structured approach:

 when functions of the system change => the analysis, the design models 
and the implementation of the system will have to be changed substantially. 

 transformation needs to be carried out whenever the models of the early 
stages have changed as a result of changes in the requirements or the 
correction of previous mistakes. 

 the dynamic view is almost non-existent in the structured approach. 

 The above weaknesses of the structured approach have made it 
less cost-effective when compared with the object-oriented 
approach. 

Structured Approach (cont’d)

Copyright © 2020 Kavian Scientific Research Association



 This approach models a software system as a collection of
collaborating objects.

 An object and its data interact with other objects through
messages being sent and received by the object and which
manipulate the object’s data in the process.

 The object-oriented approach allows the software engineer to
develop consistent models of a software system much more easily,
because the same set of models are used throughout the whole
development process.

Object-oriented Approach

Copyright © 2020 Kavian Scientific Research Association



 No effort or time is wasted by transforming and updating models 
in different stages. 

 Changes to an object-oriented system are localized in the objects 
themselves. 

 Therefore, the structure of a system developed by the object-
oriented approach is more stable than that by the structured 
approach. 

Object-oriented Approach (cont’d)

Copyright © 2020 Kavian Scientific Research Association



 The main concepts introduced here are:

 Objects, Classes and Instances

 Object State

 Generalization and Specialization

 Message-passing and Encapsulation

 Polymorphism

Basic Concepts of OO

Copyright © 2020 Kavian Scientific Research Association



An object is:

“an abstraction of something in a problem domain, 
reflecting the capabilities of the system to

 keep information about it,

 interact with it,

 or both.”

Coad and Yourdon (1990)

Objects

Copyright © 2020 Kavian Scientific Research Association



9

“Objects have state, behaviour and identity.”

Booch (1994)

 State: the condition of an object at any moment, affecting 
how it can behave

 Behaviour: what an object can do, how it can respond to 
events and stimuli

 Identity: each object is unique

Objects

Copyright © 2020 Kavian Scientific Research Association



Object

A person. ‘Hussain Pervez.’ Speak, walk, read.
Studying, resting, 

qualified.

A shirt.
My favourite button 

white denim shirt.
Shrink, stain, rip. Pressed, dirty, 

worn.

A sale. Sale no #0015, 

18/05/05.

Earn loyalty points. Invoiced, 

cancelled.

Identity Behaviour State

A bottle of 

ketchup.

This bottle of 

ketchup.

Spill in transit. Unsold, opened, 

empty.

Examples of Objects



 All objects are instances of some class

 Class: 

a description of a set of objects with similar

 features (attributes, operations, links);

 semantics;

 constraints (e.g. when and whether an object can be 
instantiated).

OMG (2004)

Class and Instance

Copyright © 2020 Kavian Scientific Research Association



 An object is an instance of some class

 So, instance = object

 but also carries connotations of the class to which the 
object belongs

 Instances of a class are similar in their:

 Structure: what it knows, what information it holds, what 
links it has to other objects

 Behaviour: what an object can do

Class and Instance

Copyright © 2020 Kavian Scientific Research Association



 Classification is hierarchic in nature

 For example, a person may be an  employee, a customer, a 
supplier of a service

 An employee may be paid monthly, weekly or hourly

 An hourly paid employee may be a driver, a cleaner, a sales 
assistant

Generalization and Specialization

Copyright © 2020 Kavian Scientific Research Association



Person

Employee Customer Supplier

monthly 

paid

weekly 

paid

hourly 

paid

Driver Cleaner Sales 

assistant

More general

(super classes)

More specialized

(subclasses)

Specialization Hierarchy

Copyright © 2020 Kavian Scientific Research Association



 More general bits of description are abstracted out from 

specialized classes:

Person

name

date of birth

gender

title

HourlyPaidDriver

startDate

standardRate

overtimeRate

licenceType

General (superclass) Specialized (subclass)

Generalization and Specialization

Copyright © 2020 Kavian Scientific Research Association



 The whole description of a superclass applies to all

its subclasses, including:

 Information structure (including associations)

 Behaviour

 Often known loosely as inheritance

 (But actually inheritance is how an O-O 

programming language implements generalization / 

specialization)

Inheritance

Copyright © 2020 Kavian Scientific Research Association



 Several objects may collaborate to fulfil each system action

 “Record CD sale” could involve:

 A CD stock item object

 A sales transaction object

 A sales assistant object

 These objects communicate by sending each other 
messages

Message-passing

Copyright © 2020 Kavian Scientific Research Association



Message from another object 

requests a service.

Operation called only via valid 

operation signature.

Data accessed only by 

object’s own operations.

An object’s data 

is hidden 

(encapsulated).

‘Layers of an onion’
model of an object:

An outer layer of 

operation signatures…

…gives access to middle 

layer of operations…

…which can access 

inner core of data

Message-passing and 

Encapsulation

Copyright © 2020 Kavian Scientific Research Association



 Polymorphism allows one message to be sent to objects of 
different classes

 Sending object need not know what kind of object will 
receive the message

 Each receiving object knows how to respond appropriately

 For example, a ‘resize’ operation in a graphics package

Polymorphism

Copyright © 2020 Kavian Scientific Research Association



Campaign

title

campaignStartDate

campaignFinishDate

getCampaignAdverts()

addNew Advert()

<<entity>>

Campaign

title

campaignStartDate

campaignFinishDate

getCampaignAdverts()

addNewAdvert()

<<entity>>

Polymorphism in         

Resize Operations

Copyright © 2020 Kavian Scientific Research Association



 Can save effort

 Reuse of generalized components cuts work, cost and time

 Can improve software quality

 Encapsulation increases modularity

 Sub-systems less coupled to each other

 Better translations between analysis and design models 

and working code

Advantages of O-O

Copyright © 2020 Kavian Scientific Research Association



 The human brain is capable of handling and processing 
only a limited amount of information at any one time. 

 Models can help reduce complexity by creating an 
abstract hierarchical representation of the real-world 
system. 

 Visual modeling is the process of representing a system 
with essential parts from a particular perspective using 
some standard graphical notations. 

Visual Modeling

Copyright © 2020 Kavian Scientific Research Association



 In the software development process, visual modeling 
can:

 capture business objects and logic;

 analyze and design applications; 

 manage complexity;

 define the software architecture; and

 model systems independent of the implementation language.

 Unified Modeling Language (UML)

Visual Modeling (cont’d)

Copyright © 2020 Kavian Scientific Research Association



 

Representation 

How to describe the 
design model 

(e.g. UML) 

Process 

What to do to produce the 
design model 

(e.g. Unified Process) 

Techniques 

How to adapt the models 
to particular types of 

problems 
(e.g. heuristics and 

procedures) 

Software Development 

Methods

Copyright © 2020 Kavian Scientific Research Association



 Capture requirements of the system;

 Analyze the system by developing suitable analysis models - Models are
expressed in an appropriate notation so that the developer can easily
find the things from which he or she can quickly extract information;

 Develop the design of the system - Design models are developed and
expressed in an appropriate notation that can be understood by the
system designer and the programmer. The system designer may need to
manipulate the analysis model and make design decisions in the
process; and

 Implement, test and deploy the system - Again, the artifacts of these
activities are expressed in a suitable notation that can be understood by
the system designer, the programmers and system testers.

Role of Notation

Copyright © 2020 Kavian Scientific Research Association



26

 Ideally, a process should offer the following features:

 a well-managed iterative and incremental life cycle to provide the 
necessary control without affecting creativity;

 embedded methods, procedures and heuristics for developers to 
carry out analysis, design and implementation for the whole 
software development life cycle (SDLC);

 a guide through the iterative and incremental development process 
for the solution of complex problems;

 a comprehensive roadmap so that designers can walk through the 
flexible multiple pathways of the development process depending 
on the nature of the problem; and

 identification of less obvious requirements based on what have 
already been known or modeled.

Role of Process 

Copyright © 2020 Kavian Scientific Research Association



 The main purpose of the techniques part of a method is to provide a set 
of guidelines and heuristics to help the developer to systematically 
develop the required design models and implementation.  

 The techniques part of a method should include the following:

 a set of guidelines to produce and verify the design against the 
original requirements and specifications;

 a set of heuristics for the designer to ensure consistency in the 
structure of a design and also the design models. The latter 
requirement is particularly important when the design is produced 
by a team of designers who will need to ensure that their models 
are consistent and coherent; 

 a system to capture the essential features of the design so as to 
supplement the limited designer’s domain knowledge.

Role of Techniques

Copyright © 2020 Kavian Scientific Research Association



 The UML is accepted by the Object Management Group (OMG) as a 
standard way of representing object-oriented analysis and design 
models. 

 It has quickly become the de facto standard for building object-oriented 
software. 

 The OMG specification states:

 “The Unified Modeling Language (UML) is a graphical language for 
visualizing, specifying, constructing, and documenting the artifacts 
of a software-intensive system. The UML offers a standard way to 
write a system's blueprints, including conceptual things such as 
business processes and system functions as well as concrete things 
such as programming language statements, database schemas, 
and reusable software components.”

 Refer to Appendix B of the book (Curtis H.K. Tsang, Clarence S.W. Lau 
and Y.K. Leung (2005)) for a more detailed description of the UML.

Overview of the UML

Copyright © 2020 Kavian Scientific Research Association



 CASE tools can significantly help developers increase their 
productivity, particularly if they provide facilities that automate many 
model building procedures.  

 Indeed, some CASE tools offer sophisticated facilities such as 
diagram-to-code and code-to-diagram, with real-time 
synchronization and consistency maintained in both directions.

 VP-UML, like most leading CASE tools, meets the following 
requirements:

 Facilitate convenient model building. Models of the system 
should be easily developed. Editor and documentation tools 
should be provided and easy to use;

 Serve as repository. Models can be saved and retrieved with 
ease;

 Support navigation. Linkages between models can be maintained 
and traversed;

Overview of Visual 

Paradigm for UML

Copyright © 2020 Kavian Scientific Research Association



 Generate documentation automatically. Documentations can be
generated for selected information of the software development
project;

 Facilitate project management. The project activities can be planned
and managed with ease;

 Facilitate configuration management and version control.
Documentations and components of different versions of the system
can be managed;

 Check model consistency. Consistency between models of the system
can be checked;

 Support model verification and validation. The correctness of the
models of the system can be verified and validated;

 Provide multi-user support. Multiple developers can work on the
project simultaneously and coherently;

 Generate code. Code can be generated from models;

Overview of Visual 

Paradigm for UML

Copyright © 2020 Kavian Scientific Research Association



31

 Reverse engineering. Models can be generated from code; and

 Provide integration with other tools. The CASE tool can be 
integrated with domain specific systems or tools so as to accelerate 
the development process. 

 Appendix A of the book (Curtis H.K. Tsang, Clarence S.W. Lau and Y.K. 
Leung (2005)) provides more information about how you can get 
started using the VP-UML CASE tool.

Overview of Visual 

Paradigm for UML

Copyright © 2020 Kavian Scientific Research Association



 Curtis H.K. Tsang, Clarence S.W. Lau and Y.K. Leung (2005)

 Coad and Yourdon (1990)

 Booch (1994)

 OMG (2004)

(For full bibliographic details, see Bennett, McRobb and 

Farmer)

References

Copyright © 2020 Kavian Scientific Research Association



Copyright © 2020 Kavian Scientific Research Association

WE FOCUS ON KNOWLEDGE-BASED ON 

EDUCATION

KSRA of Empowerment is a global non-

profit organization committed to bringing 
empowerment through education by 

utilizing innovative mobile technology and 

educational research from experts and 

scientists. KSRA emerged in 2012 as a 

catalytic force to reach the hard to reach 
populations worldwide through Learning 

management system & E-learning & mobile 

learning.

The KSRA team partners with local under-
served communities around the world to 

improve the access to and quality of 

knowledge based on education, amplify and 

augment learning programs where they 

exist, and create new opportunities for e-
learning where traditional education 

systems are lacking or non-existent.


