



E-course

## Modelling Concepts





#### In This Lecture You Will Learn:



- ▶ What is meant by a model
- ► The distinction between a model and a diagram
- ▶ The UML concept of a model



#### Modeling

- Modeling is a very important activity in software development in that the software engineer usually spends a lot of time developing models with different levels of abstraction before the software system is finally designed and implemented.
- Models can be an effective communication tool, especially in situations where detailed information is not required.



- Like a map, a model represents something else
- ► A useful model has the right level of detail and represents only what is important for the task in hand
- ► Many things can be modelled: bridges, traffic flow, buildings, economic policy





- ▶ A model is quicker and easier to build
- ► A model can be used in a simulation

► A model can evolve as we learn

▶ We can choose which details to include in a model

▶ A model can represent real or imaginary things from any domain



#### **Modeling & Model**

- Different stakeholders want different level of abstractions.
- Example Bus Information System:
  - A model for the passenger. It can be represented by a straight line with circles on it, showing the bus stop names and possibly the associated fares.
  - A model for the bus driver. It may be a simplified map showing the route covered by a bus service. Street names and the actual route will also be included to provide more details to the driver.
  - A model for the planner of bus routes. It may consist of a detailed road map with the actual bus routes. Each bus route is labeled and shown in different colors.



#### **Different Views of Modeling**

- A model usually provides one or more views, and each view represents a specific aspect of the system. For example, the model for the passenger contains the fare view and the path view.
- The fare view provides fare information for every stop on a route, while the path view provides the route information, including the associated street names.
- Models based on different views of a system must be consistent, for example, the three dimensional model of a building must be consistent with the different elevations (models) of the same building.



# Different Views of Modeling (cont'd)

- Furthermore, a model should be expressed using a suitable notation (language) that can be understood by the stakeholders.
- In the context of software development, a system can be adequately described by the following three orthogonal views:
  - a functional view, which covers the transformation of data within the software system;
  - a static view, which covers the structure of the system and its associated data; and
  - a dynamic view, which covers the sequence or procedure of a transaction in the software system.



#### **Modelling Organizations**



Organizations are human activity systems.

- ► The situation is complex
- Stakeholders have different views
- We have to model requirements accurately, completely and unambiguously
- ► The model must not prejudge the solution



### What is a Diagram?

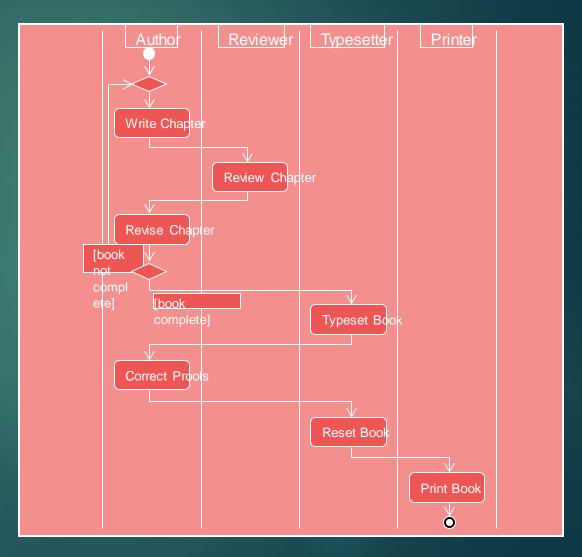
▶ Abstract shapes are used to represent things or actions from the real world

Diagrams follow rules or standards

▶ The standards make sure that different people will interpret the diagram in the same way



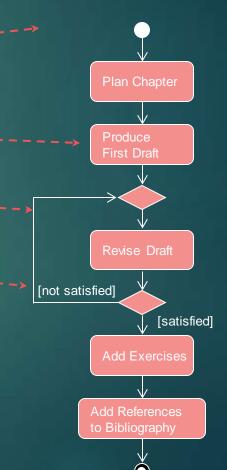







### An Example of a Diagram

E-course


► An activity diagram of the tasks involved in producing a book.





#### Diagrams in UML

- ► UML diagrams consist of:
  - ▶ icons
  - two-dimensional symbols
  - **paths**
  - **▶** Strings
- UML diagrams are defined in the UML specification.





### Diagrams vs Models




▶ A diagram illustrates some aspect of a system.

▶ A model provides a complete view of a system at a particular stage and from a particular perspective.

▶ A model may consist of a single diagram, but most consist of many related diagrams and supporting data and documentation.



#### **Examples of Models**



- Requirements Model
  - complete view of requirements
  - may include other models, such as a Use Case Model
  - ▶ includes textual description as well as sets of diagrams



- Behavioural Model
  - shows how the system responds to events in the outside world and the passage of time

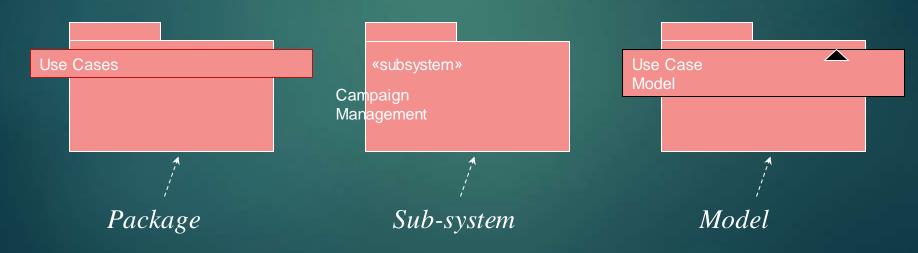
- an initial model may just use Communication Diagrams
- a later model will include Sequence Diagrams and State Machines



- A system is the overall thing that is being modelled
- A subsystem is a part of a system consisting of related elements
- A model is an abstraction of a system or subsystem from a particular perspective
- A model is complete and consistent at the chosen level of abstraction



- Different models present different views of the system, for example:
  - use case view
  - design view
  - process view
  - ▶ implementation view
  - deployment view


(Booch et al., 1999)



## Packages, Sub-systems and Models


E-course

► UML has notation for showing subsystems and models, and also for packages, which are a mechanism for organising models (e.g. in CASE tools)





#### **Developing Models**



- During the life of a project using an iterative life cycle, models change along the dimensions of:
  - abstraction—they become more concrete
  - formality—they become more formally specified
  - level of detail—additional detail is added as understanding improves



## Development of the Use Case Model

E-course

#### **Iteration 1**

Obvious use cases.
Simple use case descriptions.

#### Iteration 2

Additional use cases.
Simple use case descriptions.
Prototypes.

#### Iteration 3

Structured use cases.
Structured use case descriptions.
Prototypes.

















- ▶ Booch, Rumbaugh and Jacobson (1999)
- ▶ Bennett, Skelton and Lunn (2005)
- (For full bibliographic details, see Bennett, McRobb and Farmer)
- Object-Oriented Technology From Diagram to Code with Visual Paradigm for UML, Curtis H.K. Tsang, Clarence S.W. Lau and Y.K. Leung, McGraw-Hill Education (Asia), 2005



#### WE FOCUS ON KNOWLEDGE-BASED ON EDUCATION

KSRA of Empowerment is a global non-profit organization committed to bringing empowerment through education by utilizing innovative mobile technology and educational research from experts and scientists. KSRA emerged in 2012 as a catalytic force to reach the hard to reach populations worldwide through Learning management system & E-learning & mobile learning.

The KSRA team partners with local underserved communities around the world to improve the access to and quality of knowledge based on education, amplify and augment learning programs where they exist, and create new opportunities for elearning where traditional education systems are lacking or non-existent.



