
Copyright © 2020 Kavian Scientific Research Association

KSRA Learning Academy
KSRA Learning System

Computer

Aided
Software

Engineering

What Is 

Object-

Orientation?



SPECIFYING CONTROL

Copyright © 2020 Kavian Scientific Research Association



Copyright © 2020 Kavian Scientific Research Association

In This Lecture You Will Learn:

 how to identify requirements for control in an application;

 how to model object life cycles using state machines;

 how to develop state machine diagrams from interaction 
diagrams;

 how to model concurrent behaviour in an object;

 how to ensure consistency with other UML models.



 The current state of an object is determined by the current

value of the object’s attributes and the links that it has with

other objects.

 For example the class StaffMember has an attribute startDate

which determines whether a StaffMember object is in the

probationary state.

Copyright © 2020 Kavian Scientific Research Association

State



 A state describes a particular condition that a modelled
element (e.g. object) may occupy for a period of time while it
awaits some event or trigger.

 The possible states that an object can occupy are limited by
its class.

 Objects of some classes have only one possible state.

 Conceptually, an object remains in a state for an interval of
time.

Copyright © 2020 Kavian Scientific Research Association

State



 There are several characteristics of states:

 A state occupies an interval of time.

 A state is often associated with an abstraction of attribute

values of an entity satisfying some condition(s).

 An entity changes its state not only as a direct

consequence of the current input, but it is also dependent

on some past history of its inputs.

Copyright © 2020 Kavian Scientific Research Association

What Is a State?(cont’d)



Copyright © 2020 Kavian Scientific Research Association

UML Notation



Action or activity Description

entry/ action 1; …; action n Upon entry to the state, the specified 

actions are performed.

exit/ action 1; …; action n Upon exit from the state, the specified 

actions are performed.

do/ activity The specified activity is performed 

continuously while in this state.

event-name(parameters) 

[guard-condition]  / action 

1 ; …; action n

An internal transition is fired when the 

specified event occurs and the 

specified guard condition is true. The 

specified actions are performed when 
the transition is fired.

Copyright © 2020 Kavian Scientific Research Association

UML Notation (cont’d)



Initial state

Final state

State

History state

Junction state

Concurrent composite state

Transition

Copyright © 2020 Kavian Scientific Research Association

UML Notation (cont’d)



 A transition from one state to another takes place 

instantaneously in response to some external events or 

internal stimuli. 

Copyright © 2020 Kavian Scientific Research Association

Transition



 A transition is fired when the following conditions are satisfied:

 The entity is in the state of the source state.

 An event specified in the label occurs.

 The guard condition specified in the label is evaluated to

be true.

 When a transition is fired, the actions associated with it are

executed.

Copyright © 2020 Kavian Scientific Research Association

Transition (cont’d)



Copyright © 2020 Kavian Scientific Research Association

Composite State 



Copyright © 2020 Kavian Scientific Research Association

Composite State (cont’d) 



 The current state of a GradeRate object can be determined

by the two attributes rateStartDate and rateFinishDate.

 An enumerated state variable may be used to hold the

object state, possible values would be Pending, Active or

Lapsed.

Copyright © 2020 Kavian Scientific Research Association

state machine



state machine 

for the class 

GradeRate.

Movement 

from one 

state to 

another is 

dependent 

upon 

events that 

occur with 

the 

passage of 

time.

Pending

Active

Lapsed

Transition

between

states

[rateStartDate  <=  

currentDate]

[rateFinishDate  <=  

currentDate]

after [1 year]

Final 

psuedostate

Initial 

pseudostate

Change

trigger

GradeRate

Relative

time trigger

State

Change

trigger

state machine GradeRate

Copyright © 2020 Kavian Scientific Research Association

state machine



 A change trigger occurs when a condition becomes true.

 A call trigger occurs when an object receives a call for one of
its operations either from another object or from itself.

 A signal trigger occurs when an object receives a signal (an
asynchronous communication).

 An relative-time trigger is caused by the passage of a
designated period of time after a specified event (frequently
the entry to the current state).

Copyright © 2020 Kavian Scientific Research Association

Types of Event



Commissioned

Active

authorized(authorizationCode) [contractSigned]

/setCampaignActive

This trigger must 

correspond to an operation 

in the Campaign class 

Copyright © 2020 Kavian Scientific Research Association

Event



State Name

entry /activity-expression

exit /activity-expression

do /activity

Name 

compartment

Internal 

activities 

compartment

Copyright © 2020 Kavian Scientific Research Association

Internal Activities 



Menu Visible state for a 

DropDownMenu object.

Menu Visible

itemSelected / highlightItem

entry/ displayMenu

do   /  playSoundClip

exit  / hideMenu

Name compartment

Internal activities compartment

Internal transitions compartment

event itemSelected() 

triggers the action
highlightItem()

While the object remains in the 
Menu Visible state, the activity 

causes a sound clip to be played.

Exiting the state triggers 

hideMenu()entry action causes the 
menu to be displayed

Copyright © 2020 Kavian Scientific Research Association

‘Menu Visible’ State 



state machine 

for the class 
Campaign.

Commissioned

Authorized(authorizationCode)

[contractSigned]

/setCampaignActive 

/assignManager;

assignStaff

Active

Completed 

Paid

campaignCompleted

/prepareFinalStatement
paymentReceived(payment)

[paymentDue - payment > zero]

paymentReceived(payment)

[paymentDue - payment <= zero]

archiveCampaign

/unassignStaff;

unassignManager

Recursive transition 
models any payment 
event that does not 
reduce the amount due 
to zero or beyond.

Action-expression 

assigning manager and 
staff on object creation

Guard condition ensuring 

complete payment 
before entering Paid

Copyright © 2020 Kavian Scientific Research Association



A revised state 
machine for 
the class
Campaign

Commissioned

Authorized(authorizationCode)

[contract signed]

/setCampaignActive

/assignManager;

assignStaff

Active

Completed 

Paid

campaignCompleted

/prepareFinalStatement

paymentReceived(payment)

[paymentDue - payment > zero]

paymentReceived(payment)

[paymentDue - payment = zero]

archiveCampaign

/unassignStaff;

unassignManager

paymentReceived(payment)

[paymentDue - payment < zero]

/generateRefund

If the user requirements 

were to change, so that 
an overpayment is now 

to result in the automatic 

generation of a refund, a 
new transition is added.

Copyright © 2020 Kavian Scientific Research Association



The Active state of Campaign

showing nested substates.

The transition from the initial 

pseudostate symbol should not be 
labelled with an event but may be 

labelled with an action, though it 

is not required in this example

Advert Preparation

campaignCompleted

/prepareFinalStatement

Running Adverts Scheduling
confirmSchedule

extendCampaign

/modify Budget
advertsApproved

/authorize

Active

Decomposition compartment

Copyright © 2020 Kavian Scientific Research Association

Nested Substates



The Active state of

Campaign with the 

detail hidden. Active : Running

The submachine Running is 

referenced using the include 
statement.

Hidden decomposition 

indicator icon

Copyright © 2020 Kavian Scientific Research Association

Nested States



Advert Preparation

Running Adverts Scheduling
confirmSchedule

extendCampaign

/modify Budget

advertsApproved

/authorize

Active

Survey

Evaluation

surveyComplete

runSurvey

Running

Monitoring

campaignCompleted

/prepareFinalStatement

Copyright © 2020 Kavian Scientific Research Association

The Active state with concurrent 

substates.



 A transition to a complex state is equivalent to a simultaneous
transition to the initial states of each concurrent state machine.

 An initial state must be specified in both nested state
machines in order to avoid ambiguity about which substate
should first be entered in each concurrent region.

 A transition to the Active state means that the Campaign
object simultaneously enters the Advert Preparation and
Survey states.

Copyright © 2020 Kavian Scientific Research Association

Concurrent States



 Once the composite state is entered a transition may occur

within either concurrent region without having any effect on

the state in the other concurrent region.

 A transition out of the Active state applies to all its substates

(no matter how deeply nested).

Copyright © 2020 Kavian Scientific Research Association

Concurrent States



State 1

Transition caused 

by the event 

someTrigger

Transition fired 

by completion 

event

State 2

someTrigger

Copyright © 2020 Kavian Scientific Research Association

Completion Event



•Explicitly showing how an event triggering a transition to a

state with nested concurrent states causes specific

concurrent substates to be entered.

•Shows that the composite state is not exited until both

concurrent nested state machines are exited.

Fork Join

Copyright © 2020 Kavian Scientific Research Association

Synchronized Concurrent    

Threads.  



StoryBoard

AdvertPrep:

AdvertPrepSM

AdvertRunning

abort

sm AdvertPrepSM

abort Advert 

Aborted

Advert 

Reworked Advert 

Reworked

Advert 

Aborted

sm Advert

Exit pseudostateEntry pseudostate

Copyright © 2020 Kavian Scientific Research Association

Entry & Exit Pseudostates



x

[condition1] [condition2]

Junction pseudostate

Choice pseudostate

[<15]

[=15]

[>15]

StateA

StateCStateB

StateD

Copyright © 2020 Kavian Scientific Research Association

Junction & Choice Pseudostates



Advert Preparation

Running Adverts Scheduling
confirmSchedule

extendCampaign

/modify Budget

advertsApproved

/authorize

Active

Survey

Evaluation

surveyComplete

runSurvey

Running

Monitoring

campaignCompleted

/prepareFinalStatement

Suspended

H

suspendCampaign

/stopAdverts

resume

Campaign

H

Shallow history psuedostates 

with transition to the default 
shallow history substates.

Copyright © 2020 Kavian Scientific Research Association

History Pseudostates



H H*

Deep history 

pseudostateShallow history 

pseudostate

Copyright © 2020 Kavian Scientific Research Association

History Pseudostates



 Two approaches may be used:

 Behavioural approach

 Life cycle approach

Allen and Frost (1998) 

Copyright © 2020 Kavian Scientific Research Association

Preparing state machines



1. Examine all interaction diagrams that involve each class that
has heavy messaging.

2. Identify the incoming messages on each interaction diagram
that may correspond to events. Also identify the possible
resulting states.

3. Document these events and states on a state machine.

4. Elaborate the state machine as necessary to cater for
additional interactions as these become evident, and add
any exceptions.

Copyright © 2020 Kavian Scientific Research Association

Behavioural Approach



5. Develop any nested state machines (unless this has already
been done in an earlier step).

6. Review the state machine to ensure consistency with use
cases. In particular, check that any constraints that are
implied by the state machine are appropriate.

7. Iterate steps 4, 5 and 6 until the state machine captures the

necessary level of detail.

8. Check the consistency of the state machine with the class

diagram, with interaction diagrams and with any other state

machines and models.

Copyright © 2020 Kavian Scientific Research Association

Behavioural Approach



:Client :Campaign

listCampaigns

:CampaignManager

sd Record completion of a campaign

loop

:CompleteCampaignUI

:CompleteCampaign

getClient

selectClient

loop

getCampaignDetails()

startInterface

[For all clients] 

showClientCampaigns

completeCampaign

[For all client’s campaigns] 

completeCampaign
completeCampaign

Active state

Completed state

Active

Completed

Sequence 
Diagram with 
States Shown

Copyright © 2020 Kavian Scientific Research Association



Initial state 

machine for 

the Campaign 

class—a 

behavioural 

approach.

Commissioned

authorized(authorizationCode)

[contract signed]

/setCampaignActive

/assignManager;

assignStaff

Advert Preparation

Completed 

Paid

campaignCompleted

/prepareFinalStatement

paymentReceived(payment)

[paymentDue - payment > zero]

paymentReceived(payment)

[paymentDue - payment = zero]

archiveCampaign

/unassignStaff;

unassignManager

paymentReceived(payment)

[paymentDue - payment < zero]

/generateRefund

Running Adverts Scheduling
confirmSchedule

extendCampaign

/modify Budget
advertsApproved

/authorize

sm Campaign Version 1

Copyright © 2020 Kavian Scientific Research Association



Commissioned

Authorized (authorizationCode)

[contract signed]

/setCampaignActive 

/assignManager;

assignStaff

Advert Preparation

Completed 

Paid

campaignCompleted

/prepareFinalStatement

paymentReceived (payment)

[paymentDue - payment > zero]

paymentReceived (payment)

[paymentDue - payment = zero]

archiveCampaign

/unassignStaff;

unassignManager

paymentReceived (payment)

[paymentDue - payment < zero]

/generateRefund

Running Adverts Scheduling
confirmSchedule

extendCampaign

/modifyBudget
advertsApproved

/authorize

Active

sm Campaign Version 2

Revised state 

machine for the 
Campaign class.

Copyright © 2020 Kavian Scientific Research Association



Advert Preparation

Running Adverts Scheduling
confirmSchedule

extendCampaign

/modify Budget
advertsApproved

/authorize

Running

Survey

Evaluation

surveyComplete

runSurvey

Monitoring

authorized(authorizationCode)

[contract signed]

/setCampaignActive

/assignManager;

assignStaff

Paid

paymentReceived(payment)

[paymentDue - payment > zero]

paymentReceived(payment)

[paymentDue - payment = zero]

archiveCampaign

/unassignStaff;

unassignManager

Active

campaignCompleted

/prepareFinalStatement

Commissioned

Completed 

campaignCancelled

/cancelSchedule

calculateCosts;

prepareFinalStatement

Suspended

H

suspendCampaign

/stopAdverts

resumeCampaign

H

campaignCancelled

/calculateCosts;

prepareFinalStatement

sm Campaign Version 3

paymentReceived(payment)

[paymentDue - payment < zero]

/generateRefund

Final version 
of Campaign

state machine.



 Consider the life cycles for objects of each class.

 Events and states are identified directly from use cases and
from any other requirements documentation that happens to
be available.

 First, the main system events are listed.

 Each event is then examined in order to determine which
objects are likely to have a state dependent response to it.

Copyright © 2020 Kavian Scientific Research Association

Life Cycle Approach



1. Identify major system events.

2. Identify each class that is likely to have a state dependent

response to these events.

3. For each of these classes produce a first-cut state machine by

considering the typical life cycle of an instance of the class.

4. Examine the state machine and elaborate to encompass more

detailed event behaviour.

Copyright © 2020 Kavian Scientific Research Association

Life Cycle Approach Steps



5. Enhance the state machine to include alternative
scenarios.

6. Review the state machine to ensure that is consistent with
the use cases. In particular, check that the constraints that
the state machine implies are appropriate.

7. Iterate through steps 4, 5 and 6 until the state machine
captures the necessary level of detail.

8. Ensure consistency with class diagram and interaction
diagrams and other state machines.

Copyright © 2020 Kavian Scientific Research Association

Life Cycle Approach Steps



 Less formal than the behavioural approach in its initial

identification of events and relevant classes.

 Often helpful to use a combination of the two, since each

provides checks on the other.

Copyright © 2020 Kavian Scientific Research Association

Life Cycle Approach 



 UML 2.0 introduces a distinction between protocol and
behavioural state machines.

 All the state machines so far have been behavioural.

 Protocol state machines differ in that they only show all the
legal transitions with their pre- and post-conditions.

Copyright © 2020 Kavian Scientific Research Association

Protocol State Machines



 The states of a protocol state machine cannot have

 entry, exit or do activity sections

 deep or shallow history states

 All transitions must be protocol transitions

Copyright © 2020 Kavian Scientific Research Association

Protocol State Machines



 The syntax for a protocol transition label is as follows.

'[' pre-condition ']' trigger '/'      '[' post-condition ']’

 Unlike behavioural transitions protocol transitions do not 

have activity expressions.

Copyright © 2020 Kavian Scientific Research Association

Protocol State Machines



:TicketMachine :Barrier after:WeightSensor

sd Car enters car park

raiseBarrier

lowerBarrier

before:WeightSensor

activate

Raised

Lowered

Lowered

Active

deactivate

Blocked

barrierLowered

Inactive

ticketRequested

Copyright © 2020 Kavian Scientific Research Association

Sequence Diagram for Protocol 

State Machine Example



[barrierState = Raised and 

barrierRaisedTime > 20s] 

lowerBarrier/

[barrierState = Lowered]

Lowered

Raised 

[barrierState = Lowered] 

raiseBarrier/

[barrierState = Raised]

sm Barrier {Protocol} 

Copyright © 2020 Kavian Scientific Research Association

Protocol State Machines



 Every event should appear as an incoming message for the
appropriate object on an interaction diagram(s).

 Every action should correspond to the execution of an
operation on the appropriate class, and perhaps also to the
despatch of a message to another object.

 Every event should correspond to an operation on the
appropriate class (but note that not all operations correspond
to events).

 Every outgoing message sent from a state machine must
correspond to an operation on another class.

Copyright © 2020 Kavian Scientific Research Association

Consistency Checking 



 Consistency checks are an important task in the preparation

of a complete set of models.

 Highlights omissions and errors, and encourages the

clarification of any ambiguity or incompleteness in the

requirements.

Copyright © 2020 Kavian Scientific Research Association

Consistency Checking 



 A state diagram is typically used to model the dynamic

behavior of a subsystem, a control object or even an entity

object. Like activity diagrams, there are two approaches to

implement a state diagram:

 Using the location within a program to hold the state (for

implementing active object or entity).

 Using an explicit attribute to hold the state (for

implementing inactive object or entity).

Copyright © 2020 Kavian Scientific Research Association

Implementing State Diagrams 



 The second approach is suitable for implementing the state

diagram of an inactive entity. We can implement the state

diagram by applying the techniques below:

 Map the state diagram on to a class.

 Add a state attribute for storing the state information.

 Map an event to a method and embed all required state

transitions and actions of the event in the method.

Copyright © 2020 Kavian Scientific Research Association

State Diagrams (cont’d)



public void event_n(….) {

switch (state) {

case state_k:

if (guard_condition_w) {

state = state_m;
perform actions of the transition;

}

break;

case state_v:

…
…

}

}



Copyright © 2020 Kavian Scientific Research Association

State Diagrams (cont’d)



 For a composite state with sequential substates, we can create

a nested (inner) class for implementing the sequential

substates. The parent state machine can then invoke the

method of the nested class for handling transitions within the

nested state diagram. Another way to implement the composite

state is to transform the parent state diagram to eliminate the

composite state so that it becomes a flat level state diagram.

 For a composite state with concurrent substates, we can create

a nested class for implementing each substate. The

implementation is similar to that for nested state diagrams. The

composite state is exited when all the concurrent substates

reach their final states.

Copyright © 2020 Kavian Scientific Research Association

State Diagrams (cont’d)



Copyright © 2020 Kavian Scientific Research Association

Example – Control Object of 

Vending Machine



class VendingMachineControl

{

int _state;

float _amount, _price;

static final int WaitingCoin = 1;

static final int WaitingSelection = 2;

static final int DispensingSoftDrink = 3;

static final int DispensingChange = 4;

static final int EjectingCoins = 5;

Copyright © 2020 Kavian Scientific Research Association

Example – Control Object of 

Vending Machine (cont’d)



public VendingMachineControl(float price)
{
_amount = 0;
_state = WaitingCoin;
_price = price;

}

Copyright © 2020 Kavian Scientific Research Association

Example – Control Object of 

Vending Machine (cont’d)



public void insertedCoin(float coinValue)

{

if (state == WaitingCoin)

{

amount += coinValue;

if (amount >= price) {  // fire transition

state = WaitingSelection;

show available soft drinks;

}

}

} // insertedCoin

Copyright © 2020 Kavian Scientific Research Association

Example – Control Object of 

Vending Machine (cont’d)



Copyright © 2020 Kavian Scientific Research Association

Example – Implementing a State 

Diagram with Sequential Substates



class dispenseControl {

int _state;

static final int DispensingSoftDrink = 1;

static final int DispensingChange = 2;

static final int Complete = 3;
public dispenseControl()

{

_state = DispensingSoftDrink;

}

Copyright © 2020 Kavian Scientific Research Association

Example – Implementing a State 

Diagram with Sequential Substates 

(cont’d)



public boolean dispensedSoftDrink()

{

if (_state == DispensingSoftDrink) {

_state = DispensingChange;

dispense change;
}

return false;

}

Copyright © 2020 Kavian Scientific Research Association

Example – Implementing a State 

Diagram with Sequential Substates 

(cont’d)



public boolean dispensedChange()

{

if (_state == DispensingChange) {

_state = Complete;

return true;

}

return false;

}

Copyright © 2020 Kavian Scientific Research Association

Example – Implementing a State 

Diagram with Sequential Substates 

(cont’d)



class VendingMachineControl

{

..declaration of state attribute, constants, other attributes;

declaration of inner class dispenseControl;

..public VendingMachineControl(float price)
{

_amount = 0;

_state = WaitingCoin;

_price = price;

_substate = new DispenseControl();
}

Copyright © 2020 Kavian Scientific Research Association

Example – Implementing a State 

Diagram with Sequential Substates 

(cont’d)



public void dispensedSoftDrink() // VendingMachineControl
{

if (_state == Dispensing) {

boolean isComplete = _substate.dispensedSoftDrink();

}
}

Copyright © 2020 Kavian Scientific Research Association

Example – Implementing a State 

Diagram with Sequential Substates 

(cont’d)



Copyright © 2020 Kavian Scientific Research Association

Example – Implementing a State 

Diagram with Sequential Substates 

(cont’d)

// VendingMachineControl

public boolean dispensedChange()

{

if (_state == Dispensing) {

boolean isComplete = 

_substate.dispensedChange();

if (isComplete) {

amount = 0;

_state = WaitingCoin;

}

}

}



 UML 2.0 Superstructure Specification (OMG, 2004)

 Allen and Frost (1998) 

(For full bibliographic details, see Bennett, McRobb and Farmer)

 Object-Oriented Technology - From Diagram to Code 

with Visual Paradigm for UML, Curtis H.K. Tsang, 

Clarence S.W. Lau and Y.K. Leung, McGraw-Hill 

Education (Asia), 2005

Copyright © 2020 Kavian Scientific Research Association

References



Copyright © 2020 Kavian Scientific Research Association

WE FOCUS ON KNOWLEDGE-BASED ON 

EDUCATION

KSRA of Empowerment is a global non-

profit organization committed to bringing 
empowerment through education by 

utilizing innovative mobile technology and 

educational research from experts and 

scientists. KSRA emerged in 2012 as a 

catalytic force to reach the hard to reach 
populations worldwide through Learning 

management system & E-learning & mobile 

learning.

The KSRA team partners with local under-
served communities around the world to 

improve the access to and quality of 

knowledge based on education, amplify and 

augment learning programs where they 

exist, and create new opportunities for e-
learning where traditional education 

systems are lacking or non-existent.


