E-course

What Is !
Object- "
Orientation?

SPECIFYING CONTROL

Copyright © 2020 Kavian Scientific Research Association

In This Lecture You WIll Learn:

» how to identify requirements for control in an application;
» how to model object life cycles using state machines;

» how to develop state machine diagrams from interaction
diagrams;

» how to model concurrent behaviour in an object;

» how to ensure consistency with other UML models.

] IHE”I Copyright © 2020 Kavian Scientific Research Association

NS
A

State

» The current state of an object is determined by the current

value of the object’ s attributes and the links that it has with
other objects.

» For example the class StaffMember has an attribute startDate

which determines whether a StaffMember object is in the
probationary state.

X ‘HE”@I Copyright © 2020 Kavian Scientific Research Association

State

» A state describes a particular condition that a modelled
element (e.g. object) may occupy for a period of time while it
awaits some event or trigger.

» The possible states that an object can occupy are limited by
Its class.

» Objects of some classes have only one possible state.

» Conceptually, an object remains In a state for an interval of
time.

X ‘HE”@I Copyright © 2020 Kavian Scientific Research Association

What Is a State?(cont’d)

» There are several characteristics of states:
» A state occupies an interval of time.

» A state Is often associated with an abstraction of attribute
values of an entity satisfying some condition(s).

» An entity changes its state not only as a direct
consequence of the current input, but it is also dependent
on some past history of its inputs.

5 lHE”I Copyright © 2020 Kavian Scientific Research Association

NS
A

UML Notation

" State Mame

N/

PA

Copyright © 2020

state Mame
entry S entry action
do Jactivity
exit ¥ exit action

et [¥ action

UML Notation (cont'd)

Action or activity

Description

entry/ action 1; ...; actionn

Upon entry to the state, the specified
actions are performed.

exit/ action 1; ...; action n

Upon exit from the state, the specified
actions are performed.

do/ activity

The specified activityis performed
continuously while in this state.

event-name (parameters)
[guard-condition] / action
1;...;actionn

An internal transitionis fired when the
specifiedeventoccurs and the
specifiedguard conditionis true. The
specified actions are performed when
the transitionis fired.

Copyright © 2020 Kavian Scientific Research Association

UML Notation (cont'd)

Initial state
Final state
State

History state

® Junction state
S Concurrent composite state
e Transition

Copyright © 2020 Kavian Scientific Research Association

@
%
@)

Transition

» Atransition from one state to another takes place
Instantaneously Iin response to some external events or
Internal stimuli.

N event [guard condition] f action 1; ... ; action M)

@ Copyright © 2020

(S I[R]

[\
7\

Transition (cont'd)

» Atransition is fired when the following conditions are satisfied:
» The entity Is in the state of the source state.
» An event specified in the label occurs.

» The guard condition specified in the label is evaluated to
be true.

» When a transition Is fired, the actions associated with It are
executed.

Pa l”E”I Copyright © 2020 Kavian Scientific Research Association

Composite State

composite state

=uper State

" SubStatel O event [guard condition] ! action 1

[\

/\

@ Copyright © 2020

.y action M

CubState?

Composite State (cont'd)

event] [guard condition]faction; action2; ... (' State2

.
)

/N

Concurrentt

(" SuhbStated

@i_:eventzfactimﬁ HL

(" SuhStates

"

state machine

» The current state of a GradeRate object can be determined
by the two attributes rateStartDate and rateFinishDate.

» An enumerated state variable may be used to hold the
object state, possible values would be Pending, Active or
Lapsed.

X IHEHI Copyright © 2020 Kavian Scientific Research Association

state machine

state machine GradeRate)

<7 State
GradeRate :
O Pending
X e
Ihitial [rateStartDate <= Movement
state machine Peeudcael e from one
A Change Sstate to
for the class po g L
GradeRate. e
Transition [rateFinishDate <= dependent
between) currentDate] Up on
tat
i events that
@Sed occur with
after [1 year] the
(‘~~‘~~
“Relative passage of
i time trigger I
Final e time.

psuedostate

Copyright © 2020 Kavian Scientific Research Association

Types of Event

» A change trigger occurs when a condition becomes true.

» A call trigger occurs when an object receives a call for one of
Its operations either from another object or from itself.

» A signal trigger occurs when an object receives a signal (an
asynchronous communication).

» An relative-time trigger is caused by the passage of a
designated period of time after a specified event (frequently
the entry to the current state).

X ‘HE”@I Copyright © 2020 Kavian Scientific Research Association

Event

Commissioned

PA

\HE @I Copyright © 2020 Kavian Scientific Research Association

Internal Activities

Internal
activities
compartment

NEINE
compartment

/\/ State Name £ \

entry /activity-expression
exit /activity-expression
do /activity

. o

Copyright © 2020 Kavian Scientific Research Association

‘Menu Visible’ State

Menu Visible statefora

DropDownMenu 0bject.
Exiting the state triggers
entry action causes the hideMenu ()

menu to be displayed

do / playSoundClip
exit / hideMenu

itemSelected /ighlightltem

While the object remains in the

Menu Visible state, the activity event itemSelected ()

causes a sound clip to be played. triggers the action
highlightItem()
XIBR@ copyrioht © 2020 Kavian Scientific Research Assaciation

Action-expression
assigning manager and
staff on object creation

state machine
for the class

Campaign.

Guard condition ensuring

complete payment
before entering Paid

O (Commissioned }

\

[Active }

[Completed]7

O { Paid } Recursive transition

models any payment
event that does not
reduce the amount due
to zero or beyond.

Copyright © 2020 Kavian Scientific Research Association

/assignManager,

assignStaff { Commissioned }

A revised state _
machine for [ol]
the class

Campaign

{ Completed }—

If the user requirements

were to change, so that

an overpayment is now

to result in the automatic ® e }
generation of a refund, a L

new transition is added.

Copyright © 2020 Kavian Scientific Research Association

Nested Substates

The Active state of Campaign
showing nested substates.

The transition from the initial
pseudostate symbol should not be
labelled with an event but may be
labelled with an action, though it

/@/e

i not required ilnthis example

.

(

[Running Adverts

|

Advert Preparation }—

]
)

)

Scheduling]

o

Copyright © 2020 Kavian Scientific Research Association

Nested States

The Active state of
Campaign with the

detail hidden.

The submachine Running is

referenced using the include
statement.

ﬁActive : Running

Hidden decomposition
indicator icon

Copyright © 2020 Kavian Scientific Research Association

The Active state with concurrent
substates.

Concurrent States

» A transition to a complex state Is equivalent to a simultaneous
transition to the initial states of each concurrent state machine.

» An initial state must be specified in both nested state
machines Iin order to avoid ambiguity about which substate
should first be entered in each concurrent region.

» A transition to the Active state means that the Campaign
object simultaneously enters the Advert Preparation and

Survey states.

PA

\HE @I Copyright © 2020 Kavian Scientific Research Association

N/

Concurrent States

» Once the composite state IS entered a transition may occur
within either concurrent region without having any effect on
the state in the other concurrent region.

» A transition out of the Active state applies to all its substates
(no matter how deeply nested).

Pa l”E”I Copyright © 2020 Kavian Scientific Research Association

Completion Event

Transition fired
by completion
event

K State 1

O
7 N

State 2 \J
someTrigger <=

" Transition caused
by the event
someTrigger

Copyright © 2020 Kavian Scientific Research Association

Synchronized Concurrent
Threads.

Explicitly showing how an event triggering a transition to a
state with nested concurrent states causes specific
concurrent substates to be entered.

Shows that the composite state is not exited until both
concurrent nested state machines are exited.

Pa l”E”I Copyright © 2020 Kavian Scientific Research Association

Entry & Exit Pseudostates

sm Advert)
Entry pseudostate Exit pseudostate \1
: toryB
\ sm AavertPrepSM : F e J O
\\\ O :,
Advert ¥
Reworked ! Advert
Reworked
\ 4
abort Advert AdvertPrep:
Aborted AdvertPrepSM abort
=S
Advi:rt
Aborted

 S—

AdvertRunning J

N

Copyright © 2020 Kavian Scientific Research Association

Junction & Choice Pseudostates

StateA [StateD

Choice pseudostate
Junction pseudostate
[conditionl] &J‘Hdltlorﬁ]
[>15]
[<15]
StateB] StateC [=15]
/

Copyright © 2020 Kavian Scientific Research Association

History Pseudostates

/ﬁ

Running O

v

{ Advert Preparation]—

(Scheduling

__él—[Suspended }

_ &Y

[Running Adverts

—
—

Monitoring

o—

History Pseudostates

: Deep history
Shallow history pseudostate
pseudostate

o ¥

O O

Copyright © 2020 Kavian Scientific Research Association

Preparing state machines

» Two approaches may be used:
» Behavioural approach
» Life cycle approach

Allen and Frost (1998)

Copyright © 2020 Kavian Scientific Research Association

Behavioural Approach

1. Examine all interaction diagrams that involve each class that
has heavy messaging.

2. ldentify the incoming messages on each interaction diagram
that may correspond to events. Also identify the possible
resulting states.

3. Document these events and states on a state machine.

4. Elaborate the state machine as necessary to cater for
additional Interactions as these become evident, and add

any exceptions.

PA

\HE @I Copyright © 2020 Kavian Scientific Research Association

N/

Behavioural Approach

5. Develop any nested state machines (unless this has already
been done in an earlier step).

6. Review the state machine to ensure consistency with use
cases. In particular, check that any constraints that are
Implied by the state machine are appropriate.

7. lterate steps 4, 5 and 6 until the state machine captures the
necessary level of detall.

8. Check the consistency of the state machine with the class
diagram, with interaction diagrams and with any other state

machines and models.

PA

\HE @I Copyright © 2020 Kavian Scientific Research Association

N/

sd Record completion of a campaigru

_>

loop J all clients]
>fl i
:CompleteCampaignUl :
_ . Active

I

loop) all client’ s cllfilbaigns]

> 1
|

:|
v

Completed

f Active state

> Completed state

sm Campaign Version 1)

/assignManager,;
assignStaff

{ Commissioned]

Inltlal State { Advert Preparation]—

machine for : (
the Campaign [RunningAdvertsJ | Scheduling]
class—a

behavioural

approach.

pp { Completed '—

@) L Paid]

Copyright © 2020 Kavian Scientific Research Association

sm Campaign Version 2)

/assignManager;
assignStaff

O

{ Commissioned]

ctive N

{ Advert Preparation]—

[Running Adverts } [Scheduling]

N O

—

O
(@)
=

©
2}
D
o

Copyright © 2020 Kavian Scientific Research Association

sm Campaign Version 3)

/assignManager;
assignStaff [

w Commissioned]

/@ """"""""""" ement /setCampaignActiv ~
o
N

Monitoring V] H
(>——>‘ Survey LH
Suspended]
|

Running O | () 5
------ ﬁ[Advert Preparation }-—

[Running Adverts } [Scheduling

¢

—

7[Paid]— ------------------------ -—0

Life Cycle Approach

» Consider the life cycles for objects of each class.

» Events and states are identified directly from use cases and
from any other requirements documentation that happens to
be available.

» First, the main system events are listed.

» Each event i1s then examined in order to determine which
objects are likely to have a state dependent response to it.

P <

;,‘(‘HE”@I Copyright © 2020 Kavian Scientific Research Association

Life Cycle Approach Steps

1.

|ldentify major system events.

|ldentify each class that Is likely to have a state dependent
response to these events.

For each of these classes produce a first-cut state machine by
considering the typical life cycle of an instance of the class.

Examine the state machine and elaborate to encompass more
detailed event behaviour.

BV 4

2aS

‘HE”@I Copyright © 2020 Kavian Scientific Research Association

Life Cycle Approach Steps

5. Enhance the state machine to Include alternative
scenarios.

6. Review the state machine to ensure that is consistent with
the use cases. In particular, check that the constraints that
the state machine implies are appropriate.

7. lterate through steps 4, 5 and 6 until the state machine
captures the necessary level of detalil.

8. Ensure consistency with class diagram and interaction
diagrams and other state machines.

X ‘HE”@I Copyright © 2020 Kavian Scientific Research Association

Life Cycle Approach

» Less formal than the behavioural approach in its initial
Identification of events and relevant classes.

» Often helpful to use a combination of the two, since each
provides checks on the other.

Copyright © 2020 Kavian Scientific Research Association

Protocol State Machines

» UML 2.0 introduces a distinction between protocol and
behavioural state machines.

» All the state machines so far have been behavioural.

» Protocol state machines differ in that they only show all the
legal transitions with their pre- and post-conditions.

X IHEHI Copyright © 2020 Kavian Scientific Research Association

Protocol State Machines

» The states of a protocol state machine cannot have

» entry, exit or do activity sections
» deep or shallow history states

» All transitions must be protocol transitions

Copyright © 2020 Kavian Scientific Research Association

Protocol State Machines

» The syntax for a protocol transition label is as follows.
' pre-condition '|' trigger '/* '[' post-condition ']

» Unlike behavioural transitions protocol transitions do not
have activity expressions.

Copyright © 2020 Kavian Scientific Research Association

Sequence Diagram for Protocol

State Machine Example

sd Car enters car park

activate

ticketR-asted

: raiseBarrier

deactivate

Raised

before:WeightSensor ‘TicketMachine after:WeightSensor

Blocked lowerBarrier
=

' _ barrierLowered

(Inactive)

X ‘HE”@I Copyright © 2020 Kavian Scientific Research Association

Protocol State Machines

sm Barrier {Protocol})

J
[Lowered]é

| Reses |

O

Copyright © 2020 Kavian Scientific Research Association

Consistency Checking

» Every event should appear as an incoming message for the
appropriate object on an interaction diagram(s).

» Every action should correspond to the execution of an
operation on the appropriate class, and perhaps also to the
despatch of a message to another object.

» Every event should correspond to an operation on the
appropriate class (but note that not all operations correspond
to events).

» Every outgoing message sent from a state machine must
correspond to an operation on another class.

X ‘HE”@I Copyright © 2020 Kavian Scientific Research Association

Consistency Checking

» Consistency checks are an important task in the preparation
of a complete set of models.

» Highlights omissions and errors, and encourages the
clarification of any ambiguity or Iincompleteness in the
requirements.

X IHEHI Copyright © 2020 Kavian Scientific Research Association

Implementing State Diagrams

» A state diagram is typically used to model the dynamic
behavior of a subsystem, a control object or even an entity
object. Like activity diagrams, there are two approaches to
Implement a state diagram:

» Using the location within a program to hold the state (for
Implementing active object or entity).

» Using an explicit attribute to hold the state (for
Implementing inactive object or entity).

‘HE”@I Copyright © 2020 Kavian Scientific Research Association

VAS

v,

State Diagrams (cont’d)

» The second approach is suitable for implementing the state
diagram of an inactive entity. We can implement the state
diagram by applying the techniques below:

» Map the state diagram on to a class.
» Add a state attribute for storing the state information.

» Map an event to a method and embed all required state
transitions and actions of the event in the method.

Pa l”E”I Copyright © 2020 Kavian Scientific Research Association

State Diagrams (cont’d)

public void event_n(....) {
switch (state) {
case state k:
If,(gquard_condition_w) {
state = state_m;
perform actibns of the transition;

event_n [guard_condition_w]f actions ; }
break;
case state v.
‘ state_m
}
}

Dad \HE @I Copyright © 2020 Kavian Scientific Research Association

State Diagrams (cont’d)

» For a composite state with sequential substates, we can create
a nested (inner) class for Implementing the sequential
substates. The parent state machine can then invoke the
method of the nested class for handling transitions within the
nested state diagram. Another way to implement the composite
state Is to transform the parent state diagram to eliminate the
composite state so that it becomes a flat level state diagram.

» For a composite state with concurrent substates, we can create
a nested class for Implementing each substate. The
Implementation Is similar to that for nested state diagrams. The
composite state is exited when all the concurrent substates
reach their final states.

Dad \HE @I Copyright © 2020 Kavian Scientific Research Association

Example — Control Object of
Vending Machine

Cweaiting for coing)

-

-

dizpensed ¢oinz! amount = 0

inzetted cain [amount+coin®alue = price]l add coin value to amount

inzetted coin [amount+coin’/alue = price]f showe available soft drinks

[gjecting coins r;m-.fa'rtir'ugl for sele-:tinrf']

|-. A -

J

prezzed gject coins/f dispenze coing

pressed a soft drink [=oft drink iz available]

preszzed a =oft drink [zoft drink iz not available]s dizpenze soft drink

(dizpenzing soft drink \]

X

J

dizpenszed soft drink ¥ dizpensze change

" dizpenszing change \I

Example — Control Object of
Vending Machine (cont'd)

class VendingMachineControl

{ o
Int _state;
float _amount, price;
static final int WaitingCoin = 1;
static final int WaitingSelection = 2;
static final int DispensingSoftDrink = 3,
static final int DispensingChange = 4;
static final int EjectingCoins = 5;

Copyright © 2020 Kavian Scientific Research Association

Example — Control Object of
Vending Machine (cont'd)

public VendingMachineControl(float price)

{
_amount = 0;
_state = WaitingCoin;
_price = price;

)

o IHEHI Copyright © 2020 Kavian Scientific Research Association

\N/
|/ \

Example — Control Object of
Vending Machine (cont'd)

public void insertedCoin(float coinValue)

{
if (state == WaitingCoin)
{
amount += coinValue;
if (@amount >= price) { // fire transition

state = WaitingSelection; <
show available soft drinks;
}
}

1/l insertedCoin

Copyright © 2020 Kavian Scientific Research Association

Example — Implementing a State
Diagram with Sequential Substates

. . inzerted coin [amount+cointalue = price)f add coin value to amount
—af weating for coing’)

dispensed goins/ amount = 0 inzerted coin [amount+cointalue == price)’ show available soft drinks

reszsed a zoft drink [soft drink iz available]

(walting for selection’,

FZI-FEE:E:EH cject I:-:-I;IiI'IE:." I:iiE:FIEr'IE:l; Caits
preszzed a soft drink [zoft drink is not available]f dispense soft drink

dizpensing

dizpensing soft drink K

dispenzed changef amount =0 1 .
dizpensing change

PA

\HE @I Copyright © 2020 Kavian Scientific Research Association

Example — Implementing a State
Diagram with Sequential Substates

(cont'd)

class dispenseControl {
int _state;
static final int DispensingSoftDrink = 1,
static final int DispensingChange = 2;
static final int Complete = 3;
public dispenseControl()

{
_state = DispensingSoftDrink;

}

PA

\HE @I Copyright © 2020 Kavian Scientific Research Association

Example — Implementing a State
Diagram with Sequential Substates
(cont'd)

public boolean dispensedSoftDrink()

{
If (_state == DispensingSoftDrink) {
_state = DispensingChange;
dispense change;

}

return false:

PA

\HE @I Copyright © 2020 Kavian Scientific Research Association

N/

Example — Implementing a State
Diagram with Sequential Substates
(cont'd)

public boolean dispensedChange()
{
If (_state == DispensingChange) {
_state = Complete;
return true;

}

return false:

v,

VAS

‘HE”@I Copyright © 2020 Kavian Scientific Research Association

Example — Implementing a State
Diagram with Sequential Substates
(cont'd)

class VendingMachineControl
{
..declaration of state attribute, constants, other attributes;
declaration of inner class dispenseControl;
..public VendingMachineControl(float price)
{
_amount = 0;
_state = WaitingCoin;
_price = price;
_substate = new DispenseControl();

Copyright © 2020 Kavian Scientific Research Association

Example — Implementing a State
Diagram with Sequential Substates
(cont'd)

public void dispensedSoftDrink() #/ VendingMachineControl

if (_state == Dispensing) {
boolean isComplete = substate.dispensedSoftDrink();

}
}

<

PA

\HE @I Copyright © 2020 Kavian Scientific Research Association

N/

Example — Implementing a State
Diagram with Sequential Substates
(cont'd)

LDV // VendingMachineControl
public boolean dispensedChange()
;
If (_state == Dispensing) {
boolean isComplete =
_Substate.dispensedChange();
If (IsComplete) {
amount = 0;
_state = WaitingColin;

References

» UML 2.0 Superstructure Specification (OMG, 2004)

» Allen and Frost (1998)
(For full bibliographic details, see Bennett, McRobb and Farmer)

» Object-Oriented Technology - From Diagram to Code
with Visual Paradigm for UML, Curtis H.K. Tsang,
Clarence S.W. Lau and Y.K. Leung, McGraw-Hill
Education (Asia), 2005

PA

\HEHQI Copyright © 2020 Kavian Scientific Research Association

N/

KSRA of Empowerment is a global non-
profit organization committed to bringing
empowerment through education by
utilizing innovative mobile technology and
educational research from experts and
scientists. KSRA emerged in 2012 as a
catalytic force to reach the hard to reach
populations worldwide through Learning
management system & E-learning & mobile
learning.

The KSRA team partners with local under-
served communities around the world to
improve the access to and quality of
knowledge based on education, amplify and
augment learning programs where they
exist, and create new opportunities for e-
learning where traditional education
systems are lacking or non-existent.

XIARZ

Copyright © 2020 Kavian Scientific Research Association

